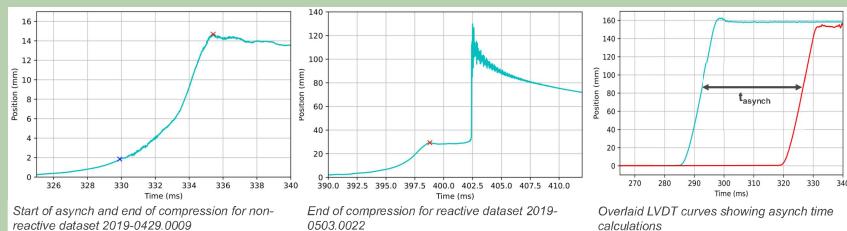


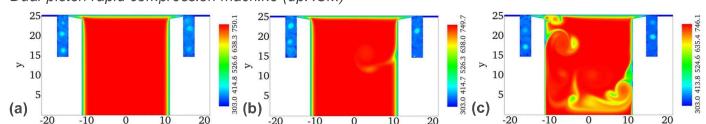
QUANTIFYING ASYNCHRONOUS BEHAVIOR IN SUSTAINABLE FUEL COMBUSTION EXPERIMENTS

Andrew Park, S. Scott Goldsborough, Transportation and Power Systems Division

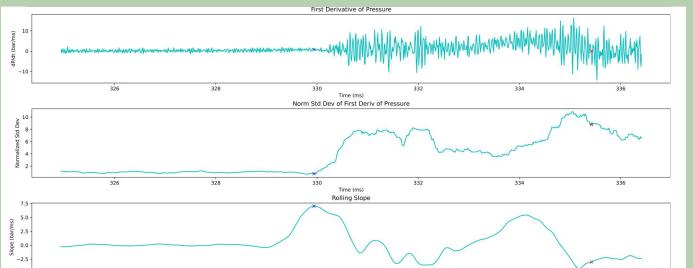
MOTIVATION

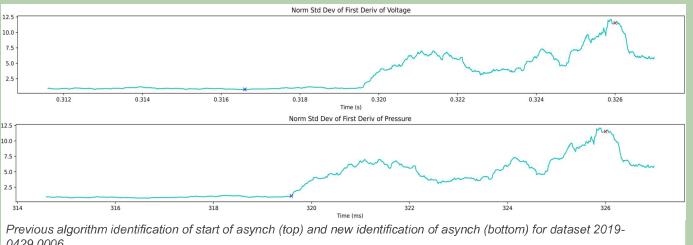

Sustainable fuel research is helping transition the transportation industry to no longer rely on finite resources for fuel sources but instead turn to more renewable alternatives. To replace petroleum-based fuels, sustainable fuels must have similar combustion properties, often measured in a rapid compression machine, which requires a quiescent environment for accurate investigations. However, asynchronous behavior in dual-piston rapid compression machines (dpRCMs) can cause serious degradation of the adiabatic core and undesirable results.

OBJECTIVES

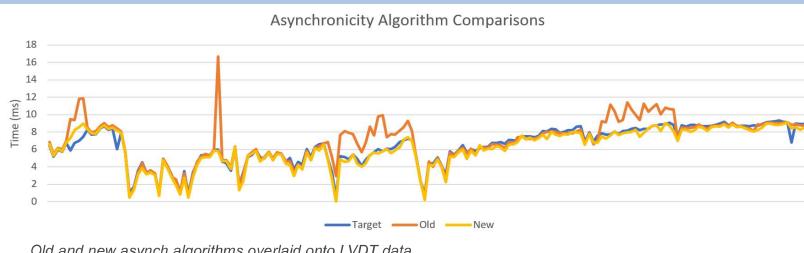

- Accurately identify the delay time in dpRCM experiments
- Compare against linear variable differential transformer (LVDT) data

METHODS


- Delay in piston actuation – difference in stroke completion times
- Identifying beginning and end of asynch
 - Beginning – sharp increase in noise
 - First piston striking reaction chamber
 - Dramatic increase in normalized standard deviation of first derivative
 - End – end of compression
- Improved from threshold-based algorithm to rolling slope-based
 - Avoiding falsely identifying noise
 - Difference between two points held at constant offset


Dual-piston rapid compression machine (dpRCM)

Simulated temperature distribution within reaction chamber at delay times of (a) 4ms; (b) 6ms; and (c) 8ms.



Start of noise in first derivative coinciding with dramatic increase in normalized standard deviation of first derivative also coinciding with extrema in the rolling slope trace. Dataset 2019-0429.0009.

Previous algorithm identification of start of asynch (top) and new identification of asynch (bottom) for dataset 2019-0429.0006

RESULTS

Old and new asynch algorithms overlaid onto LVDT data

	Old	New
Mean Difference (ms)	0.460	0.048
Standard Deviation (ms)	1.264	0.224
# of Outliers	46	6

Safety Note: When working with digital information, following all cybersecurity and counterintelligence procedures is imperative. This includes but is not limited to creating strong passwords, logging out of all devices, and not accessing files or data with personal accounts.

References:

[1] S. Scott Goldsborough, Song Cheng, Dongil Kang, Joseph P. Molnar, Yuri M. Wright, Christos E. Frouzakis. Asynchronicity in opposed-piston RCMs: Does it matter?, *Proceedings of the Combustion Institute*.